

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 5615-5618

Tetrahedron Letters

Ring conformations of D-glucose derivatives possessing two bulky silyl protecting groups at the 3,4-positions; the first observation of a stable full-axial chair conformer without bridge structures

Hidetoshi Yamada,* Koki Tanigakiuchi, Kohei Nagao, Kotaro Okajima and Tatsuya Mukae

School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan

Received 20 April 2004; revised 21 May 2004; accepted 26 May 2004 Available online 15 June 2004

Abstract—The ring conformations of 3,4-bis-*O-tert*-butyldimethylsilyl- and 3,4-bis-*O-tert*-butyldiphenylsilyl-D-glucopyranoses as well as the corresponding phenyl 1-thio-D-glucopyranosides were investigated. Observations showed that the introduction of the two *tert*-butyldiphenylsilyl groups can flip the pyranose-ring into the ${}^{1}C_{4}$ conformation possessing more axial substituents. All the substituents of the 3,4-bis-*O-tert*-butyldiphenylsilyl- β -D-glucopyranose were axially oriented. © 2004 Elsevier Ltd. All rights reserved.

The introduction of bulky trialkylsilyl or alkyldiarylsilyl protecting groups into adjacent diols on a tetrahydropyran ring sometimes flips the ring from a chair form with more equatorial substituents (equatorial-rich chair form) into another chair form that has more axial substituents (axial-rich chair form) (Fig. 1).^{1,2} Although

Figure 1. Examples of the stable conformers of tetrahydropyrane rings existing in the axial-rich chair form induced by two or more bulky trialkylsilyloxy groups.^{1a,b,d,2}

0040-4039/\$ - see front matter $\odot 2004$ Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.05.126

such conformational inversions have been used for substrate-controlled stereoselective synthetic reactions,^{2,3} the relative thermodynamical stability in such ring-flips has not been rationalized. This communication reports the ring conformation of D-glucose derivatives bearing two *tert*-butyldimethylsilyl (TBS) or two *tert*-butyldiphenylsilyl (TBDPS) groups at the 3,4-positions. The first D-glucose derivative whose substituents are all oriented axially is also disclosed.

We prepared the 3,4-bis-*O-tert*-butyldimethylsilyl- and 3,4-bis-*O-tert*-butyldiphenylsilyl-D-glucopyranoses 2-5 (Scheme 1) to investigate the ring conformations. We studied the ring conformation of the corresponding phenylthioglucosides 6-9 as well, which were the synthetic intermediates of 2-5, because these compounds were comparable to the phenylthioglucoside 1 (Fig. 1) reported by Walford and co-workers, whose stable axial-rich chair conformation has already been established by X-ray crystallography.^{1b}

Compounds 2–5 were synthesized as follows (Scheme 1). Discrimination of the 3,4-positions was achieved by applying van Boeckel's method using the 1,1,2,2-tetraisopropyldisiloxanyl (TIPDS) group.⁴ Thus, the respective treatment of the phenyl 1-thio-D-glucopyranosides 10^5 and 11^6 with TIPDSCl₂ followed by migration of the generated 4,6-TIPDS protection into the 3,4-positions under acidic conditions provided 12 and 13. Each

Keywords: Ring conformation; ${}^{1}C_{4}$; Pyranose ring; D-Glucose; Bulky silyl protecting groups.

^{*} Corresponding author. Tel.: +81-79-565-8342; fax: +81-79-565-9077; e-mail: hidetosh@kwansei.ac.jp

Scheme 1. Reagents and conditions: (a) TIPDSCl₂, pyridine, rt, then cat. *p*-TsOH, DMF, rt, 49% for 12 (from 10) or 66% for 13 (from 11); (b) TrocCl, TMEDA, CH₂Cl₂, rt then TBAF, AcOH, THF, rt, 58% for 14 (from 12) or 96% for 15 (from 13); (c) TBSOTf or TBDPSOTf, 2,6-lutidine, DMF, 60–100 °C, then Zn dust, AcOH, Et₂O, rt, 51% for 6 (from 14), 27% for 7 (from 14), 31% for 8 (from 15), or 52% for 9 (from 15); (d) NBS, THF/H₂O (1:1), rt, 68% for 2 and 3 (from 8) or 56% for 4 and 5 (from 9).

compound was independently introduced the 1,1,1-trichloroethoxycarbonyl (Troc) groups⁷ at the 2- and 6positions followed by removal of the TIPDS group to give 3,4-diols 14 and 15, respectively. The introduction of the TBS and TBDPS groups into the 3,4-diol of 14 followed by cleavage of the Troc groups provided 6 and 7. Similar treatment of 15 afforded 8 and 9. Hydrolysis of the phenylthio group of 8 and 9 produced anomeric mixtures of the desired 3,4-bis-O-TBS-glucopyranoses 2 and 3 ($\alpha:\beta = 60:40$), and the corresponding bis(TBDPS)-protected 4 and 5 ($\alpha:\beta = 89:11$), respectively.

Table 1. Coupling constants in the ¹H NMR spectra of 1-11

The ring conformations of **2**–**9** were determined by ¹H NMR analyses. Table 1 summarizes the coupling constants due to the vicinal protons on each pyranose- or pyranoside ring.⁸ The coupling constants of **1** (Fig. 1) and the nonsilylated **10** and **11** (Scheme 1) are also listed for comparison.⁹ The coupling constants of **10** and **11** were observed in CD₃OD. Other compounds were recorded in acetone- d_6 because of the good separation of each signal.

The pyranoses protected by the two TBS groups, **2** and **3**, were in the ${}^{4}C_{1}$ form (Fig. 2). Although the coupling constants of **2** were smaller than those of the nonsilylated **10** (Table 1), the molecular model assembled based on the dihedral angles calculated by the Karplus equations indicated that the ring conformation of **2** was still in the range of the equatorial-rich chair (${}^{4}C_{1}$) form, even though the ring was slightly flattened like a reclining chair.^{10,11} The coupling constants of the β -isomer **3** were similar to those of **11**. Therefore, both pyranoses possessing TBS groups at the 3,4-positions, **2** and **3**, maintained the equatorial-rich chair form.

On the other hand, the pyranoses protected by the two TBDPS groups, **4** and **5**, existed in the ${}^{1}C_{4}$ conformation (Fig. 2), because the ${}^{1}H$ NMR spectra of **4** and **5** did not show large coupling constants due to the 1,2-diaxial protons (Table 1). The range of the coupling constants was substantially similar to those of **1** in which the ${}^{1}C_{4}$ conformation is confirmed by an X-ray study.^{1b} The long range w-couplings between H-2 and H-4 and between H-3 and H-5 also supported the conformation in solution. It is noteworthy that all substituents on the pyranose ring of the β -isomer **5** were axially oriented, and this is the first observation of a stable 'full-axial' chair conformer of the D-glucose derivative without a bridge structure.¹²

Whereas the ring conformation of the pyranoses 2–5 differed in the use of the TBS or TBDPS groups, the ring conformations of the corresponding thioglucosides were

Compound	Substituent at the anomeric position	Protecting groups at the 3,4-positions	$^{3}J_{\rm HH}$ (Hz)				W-coupling (Hz)
			H-1-H-2	H-2–H-3	H-3–H-4	H-4-H-5	(position)
1 ^a	α-SPh	TBS ^c	2.9	5.5	4.5	3.1	1.0 (H-2–H-4)
2 ^a	α-OH	TBS	3.1	7.0	6.3	6.3	
3 ^a	β-ОН	TBS	7.0	8.4	7.6	8.6	
4 ^a	α-OH	TBDPS	2.2	5.2	2.7	1.5	1.5 (H-2–H-4), 0.8 (H-3–H-5)
5 ^a	β-ΟΗ	TBDPS	4.8	2.4	2.9	1.9	1.1 (H-2–H-4), 1.0 (H-3–H-5)
6 ^a	α-SPh	TBS	2.9	5.7	4.7	4.0	1.3 (H-2–H-4)
7 ^a	α-SPh	TBDPS	2.0	3.0	3.0	1.5	1.5 (H-2–H-4), 1.9 (H-3–H-5)
8 ^a	β-SPh	TBS	9.3	7.2	7.2	8.0	
9 ª	β-SPh	TBDPS	7.8	1.2	3.3	1.2	1.2 (H-2–H-4), 1.2 (H-3–H-5)
10 ^b	α-SPh	_	5.2	10.0	8.8	10.0	
11 ^b	β-SPh	_	9.6	8.8	7.6	9.2	

^a In acetone- d_6 .

^b In CD₃OD.

^c The compound possesses one more TBS group at O-6.

Figure 2. Ring conformation of 3,4-O-silylated D-glucose derivatives.

affected more by the configuration of the anomeric position than by the variation in the silyl groups. Thus, the coupling constants of the α -thioglucosides 6 and 7 (Table 1) were fundamentally similar to those of 1, therefore, these rings were both in the ${}^{1}C_{4}$ conformation (Fig. 2). On the other hand, the ring of the β -isomers 8 and 9 were not in the axial-rich chair form. The coupling constants of 8 were similar to the data of the nonsilylated 11 indicating that the ring was in the range of ${}^{4}C_{1}$. In contrast, the coupling constants of 9 due to H-2–H-3, H-3-H-4, and H-4-H-5 were small, and two w-couplings due to H-2-H-4 and H-3-H-5 were observed. The coupling constant between H-1 and H-2, however, indicated that these protons were trans-diaxial. Based on this information, the ring of 9 would be in the skew form $({}^{3}S_{1})$.^{13,14} Therefore, the α -thioglucosides 6 and 7 were in the ${}^{1}C_{4}$ form with the equatorial phenylthio group. Similarly, the β -phenylthic groups of both 8 and 9 were equatorially oriented, and, for this reason, these rings were not in the ${}^{1}C_{4}$ form.

Jackson's group mentioned the reasons of the ring flip on the tris(TBS)-protected **1** (see Fig. 1) in their report, that is the *A*-value of the phenylthio group is not sufficiently large to force the other substituents axial,¹⁵ and the adjacent TBS groups at C-3 and C-4 are more sterically encumbered when they are diequatorial than when they are diaxial.^{1b} In our observations, the rings of the bis(TBS)-protected **2** and **3** were not in the ¹C₄ (Fig. 2). In contrast, the corresponding bis(TBS)-protected α -phenylthioglucoside **6** was in the ¹C₄ form. Thus, the steric repulsion of the adjacent *O*-TBS groups at the C-3 and C-4 itself is too short to flip the ring;^{1d,2d,16} thus support of the phenylthio group achieved it. In conclusion, the introduction of the two TBDPS groups at the 3,4-positions of the D-glucopyranose fundamentally flipped the ring into the axial-rich chair form, but use of the two TBS groups itself was too short to flip. Among the compounds prepared for this study, **5** showed that a glucose derivative can stably exist in the full-axial chair conformation without a bridge structure. The axial-rich chair form of **6** is seemingly the ring-flip induced by just two TBS groups, however, the cause of this stability is the support of the phenylthio group at the anomeric position.

Acknowledgements

Financial support by the Naito Foundation (Japan), the Sunbor Grant (Suntory Institute for Bioorganic Research, Japan), and the Cosmetology Research Foundation (Japan) is gratefully acknowledged.

References and notes

- (a) Tius, M. A.; Busch-Petersen, J. Tetrahedron Lett. 1994, 35, 5181–5184; (b) Walford, C.; Jackson, R. F. W.; Rees, N. H.; Clegg, W.; Heath, S. L. Chem. Commun. 1997, 1855–1856; (c) Deng, S.; Yu, B.; Lou, Y.; Hui, Y. J. Org. Chem. 1999, 64, 202–208; (d) Yamada, H.; Nakatani, M.; Ikeda, T.; Marumoto, Y. Tetrahedron Lett. 1999, 40, 5573–5576; (e) Feldman, K. S.; Lawlor, M. D.; Sahasrabudhe, K. J. Org. Chem. 2000, 65, 8011–8019.
- (a) Hosoya, T.; Ohashi, Y.; Matsumoto, T.; Suzuki, K. *Tetrahedron Lett.* **1996**, *37*, 663–666; (b) Matsumoto, T.; Yamaguchi, H.; Suzuki, K. *Tetrahedron* **1997**, *53*, 16533– 16544; (c) Yahiro, Y.; Ichikawa, S.; Shuto, S.; Matsuda, A. *Tetrahedron Lett.* **1999**, *40*, 5527–5531; (d) Ichikawa, S.; Shuto, S.; Matsuda, A. J. Am. Chem. Soc. **1999**, *121*, 10270–10280; (e) Futagami, S.; Ohashi, Y.; Imura, K.; Hosoya, T.; Ohmori, K.; Matsumoto, T.; Suzuki, K. *Tetrahedron Lett.* **2000**, *41*, 1063–1067; (f) Abe, H.; Shuto, S.; Matsuda, A. J. Am. Chem. Soc. **2001**, *123*, 11870– 11882; (g) Tamura, S.; Abe, H.; Matsuda, A.; Shuto, S. Angew. Chem., Int. Ed. **2003**, *42*, 1021–1023.
- (a) Yamada, H.; Ikeda, T. *Chem. Lett.* 2000, 432–433; (b) Ikeda, T.; Yamada, H. *Carbohydr. Res.* 2000, 329, 889– 893.
- 4. van Boeckel, C. A. A.; van Boom, J. H. *Tetrahedron* **1985**, 4545–4555.
- Hanessian, S.; Guindon, Y. Carbohydr. Res. 1980, 86, C3– C6.
- Motawia, M. S.; Olsen, C. E.; Enevoldsen, K.; Marcussen, J.; Møller, B. L. Carbohydr. Res. 1995, 277, 109–123.
- Windholz, T. B.; Johnston, D. B. R. Tetrahedron Lett. 1967, 2555–2557.
- 8. A mixture of 2 and 3 as well as a mixture of 4 and 5 were used for the measurements, because each mixture is not separable. Employment of 2-D techniques such as the HH *J*-resolution spectra and ¹H homodecoupling measurements made it possible to accurately determine each value of the coupling constants.
- 9. Because the detailed ${}^{3}J_{\rm HH}$ values of **1** were not in Jackson's report (Ref. 2b), we prepared it and measured the values.
- 10. Karplus, M. J. Am. Chem. Soc. 1963, 85, 2870-2871.

- 11. Calculated dihedral angles of H-1–C-1–C-2–H-2, H-2–C-2–C-3–H-3, H-3–C-3–C-4–H-4, and H-4–C-4–C-5–H-5 are 51°, 151°, 146°, and 146°, respectively.
- (a) Park, Y. J.; Kim, H. S.; Jeffrey, G. A. Acta Cryst. 1971, B27, 220–227; (b) Gadelle, A.; Defaye, J. Angew. Chem., Int. Ed. Engl. 1991, 30, 78–79; (c) Ashton, P. R.; Ellwood, P.; Staton, I.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1991, 30, 79–80; (d) Okuda, T.; Yoshida, T.; Nayeshiro, H. Tetrahedron Lett. 1976, 3721–3722; (e) Ikeda, Y.; Nagao, K.; Tanigakiuchi, K.; Tokumaru, G.; Tsuchiya, H.; Yamada, H. Tetrahedron Lett. 2004, 45, 487–489.
- Yamada, H.; Okajima, K.; Imagawa, H.; Nagata, Y.; Nishizawa, M. *Tetrahedron Lett.* 2004, 45, 4349–4351.
- 14. Abe, H.; Terauchi, M.; Matsuda, A.; Shuto, S. J. Org. Chem. 2003, 68, 7439-7447.
- (a) Subbotin, O. A.; Palyulin, V. A.; Kozhushkow, S. I.; Zefirov, N. S. J. Org. Chem. USSR (Engl. Transl.) 1978, 14, 196; (b) Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds; John Wiley and Sons: New York, 1994.
- 16. Asano, S.; Tamai, T.; Totani, K.; Takao, K.; Tadano, K. Synlett 2003, 2252–2254.